Mohammed Alenazi | Computer Engineering | Outstanding Contribution Award

Dr. Mohammed Alenazi | Computer Engineering | Outstanding Contribution Award

Assistant Professor | University of Tabuk | Saudi Arabia

Dr. Mohammed M. Alenazi is a distinguished academic, researcher, and professional engineer specializing in artificial intelligence, machine learning, and energy-efficient communication networks. He holds a Ph.D. in Electrical and Electronics Engineering from the University of Leeds, an M.Eng. in Computer Engineering from Florida Institute of Technology, a B.Eng. in Computer Engineering from the University of Sultan Bin Fahad in Tabuk, and an Associate’s degree in Electrical/Electronics from Tabuk College of Technology. His career began as a Senior Engineer at Saudi Telecom Company, where he worked on optical fiber networks, before transitioning into academia as a Teaching Assistant at Northern Border University and later serving as an Assistant Professor at the University of Tabuk. Dr. Alenazi’s research focuses on integrating AI and machine learning with communication systems, particularly in optimizing energy consumption, IoT-driven intelligent systems, and neural network embedding for large-scale automation. His contributions also extend to optical networks and safety-critical communication technologies, including a patent on vehicle communication during accidents. A member of IEEE, AAAI, AISB, PMI, and the Saudi Council of Engineers, he has earned recognition for his innovative research, patents, and professional service. His work bridges theoretical AI with real-world applications, paving the way for sustainable and scalable smart networks. With professional certifications in CCNA, CompTIA Security+ ce, and PMP, he brings a unique blend of technical, managerial, and academic expertise. He has 28 citations by 27 documents, 7 published documents, and an h-index of 3. Through teaching, research, and innovation, Dr. Alenazi continues to contribute significantly to advancing energy-efficient AI systems and communication technologies, establishing himself as a leader in both academia and industry.

Profile : Scopus | ORCID | Google Scholar 

Featured Publications

Alenazi, M. M. Energy efficient placement of ML-based services in IoT networks. IEEE Xplore. [Cited by 20+ articles]

Alenazi, M. M. Energy efficient neural network embedding in IoT over passive optical networks. IEEE Xplore. [Cited by 15+ articles]

Alenazi, M. M. Intelligent system for the sterilization of doors. IEEE Xplore. [Cited by 10+ articles]

Mohsen Hatami | Electrical and Computer | Best Researcher Award

Mohsen Hatami | Electrical and Computer | Best Researcher Award

PhD candidate at Binghamton University, United states

Mohsen Hatami is a highly motivated and accomplished Ph.D. candidate in Electrical and Computer Engineering at Binghamton University, SUNY. With a strong foundation in IoT systems, smart technologies, and AI/ML, his work focuses on advancing sustainable computing and cybersecurity within emerging technologies such as smart grids and metaverse applications. Throughout his academic and professional journey, Mohsen has led innovative projects, particularly in IoT solar cell systems, smart grid management, and cyber-physical defense systems, contributing significantly to the field through his published works.

Profile:

Google scholar

Education:

Mohsen Hatami’s educational background reflects a robust commitment to the advancement of electrical and computer engineering. He is currently pursuing a Ph.D. in Electrical and Computer Engineering at Binghamton University, where he has achieved a remarkable GPA of 3.94/4.0. His research explores the intersection of IoT, AI, machine learning, and smart grid technologies, with an expected completion date in May 2026. Mohsen holds a Master’s degree in Electrical and Electronic Engineering from Kashan University, Iran, where he was recognized as a top student and researcher. His academic journey began with a Bachelor of Science in Applied Science Electronics from Bahar Higher Education Institute of Mashhad and an Associate degree from Shahrekord All Boys Vocational College, both in Iran.

Experience:

Mohsen’s professional experience spans multiple roles where he applied his technical expertise in both hardware and software engineering. At Genoptic (Canada) and Tavanmand (Iran), he led the design and implementation of IoT systems for solar cell monitoring, enhancing energy efficiency through real-time data collection. He also worked on industrial IoT solutions, including an IoT-based failure management system for industrial use, leveraging 4G/5G networks for robust connectivity. Further, Mohsen contributed to the development of smart farm IoT systems at Paya Chip Co., Iran, optimizing water usage and soil monitoring for enhanced agricultural productivity. In addition, he designed fiber optic networks and power systems for the smart grid at Diaco Co. and Pars Kavian Niroo, respectively, demonstrating his versatility across various technical domains.

Research Interests:

Mohsen’s research interests cover a broad spectrum of cutting-edge fields within electrical engineering, including AI and machine learning, embedded systems, network security, blockchain technology, and the metaverse. His work primarily focuses on the integration of IoT with emerging technologies such as 5G/6G communication, edge computing, and digital twins. He is particularly interested in exploring the role of AI in enhancing the security of cyber-physical systems, especially in smart grid environments, and the potential applications of the metaverse in smart grid management.

Awards:

Throughout his academic career, Mohsen Hatami has earned several honors recognizing his research contributions and academic excellence. As a top student and researcher at Kashan University, he was awarded for his outstanding performance in his Master’s program. Additionally, Mohsen has been acknowledged for his leadership in research projects and his dedication to advancing knowledge in fields such as IoT systems and smart technologies.

Publications:

Mohsen Hatami’s research has been widely recognized in top-tier journals and conferences. Some of his key publications include:

  1. Hatami, M., Nasab, M. A., Chen, Y., Mohammadi, J., Ardiles-Cruz, E., & Blasch, E. (2024). ELOCESS: An ESS Management Framework for Improved Smart Grid Stability and Flexibility. IEEE Transactions on Consumer Electronics.

  2. Hatami, M., Qu, Q., Chen, Y., Kholidy, H., Blasch, E., & Ardiles-Cruz, E. (2024). A Survey of the Real-Time Metaverse: Challenges and Opportunities. Future Internet, 16(10), 379.

  3. Hatami, M., Nasab, M. A., Zand, M., Padmanaban, S. (2024). Demand Side Management Programs in Smart Grid Through Cloud Computing. Renewable Energy Focus, 51, 100639.

  4. Hatami, M., Khan, M., Zhao, W., Chen, Y. (2024). A Novel Trusted Hardware-Based Scalable Security Framework for IoT Edge Devices. Discover Internet of Things, 4(1), 4.

  5. Hatami, M., Qu, Q., Chen, Y., Mohammadi, J., Blasch, E., Ardiles-Cruz, E. (2024). ANCHOR-Grid: Authenticating Smart Grid Digital Twins Using Real World Anchors.

  6. Hatami, M., Qu, Q., Xu, R., Nagothu, D., Chen, Y., Li, X., Blasch, E., Ardiles-Cruz, E. (2024). The Microverse: A Task-Oriented Edge-Scale Metaverse. Future Internet, 16(2), 60.

  7. Hatami, M., Nikoufard, M. (2018). Analysis of Ultra-Compact TE to TM Polarization Rotator in InGaAsP and SOI Technologies. Optik-International Journal for Light and Electron Optics, 153, 9-15.

Conclusion:

Mohsen Hatami is a promising researcher and engineer in the field of Electrical and Computer Engineering, with a focus on IoT systems, AI/ML, and cybersecurity. His academic achievements and professional experience reflect a strong commitment to advancing technology in the fields of smart grids, metaverse applications, and embedded systems. With numerous published works in leading journals and his continuous contributions to innovative projects, Mohsen stands out as a dedicated researcher and an emerging expert in his field. His ongoing work in the smart grid and cybersecurity domains holds significant potential for addressing future challenges in these rapidly evolving areas.