Aaron Mangrobang | Information Technology | Best Researcher Award

Mr. Aaron Mangrobang | Information Technology | Best Researcher Award

Aaron Mangrobang at Pangasinan State University, Philippines.

Mr. Aaron N. Mangrobang is an adaptable ICT educator and practitioner with dual degrees in Information Technology and Hotel & Restaurant Management, and a master’s degree in Information Technology from Saint Louis University. His career blends academic instruction with practical DevOps, software development, and automation skills. Known for his strong communication, critical thinking, and collaborative approach, Aaron effectively bridges academic theory with real-world technology applications. He is passionate about nurturing the next generation of IT professionals while continuously enhancing ICT operations and systems security across institutions.

Professional Profile

Orcid

🎓 Education 

  • Master in Information Technology, Saint Louis University, 2021–2023

  • Bachelor of Science in Information Technology, ABE International Business College of Accountancy, 2017–2019

  • Bachelor of Science in Hotel & Restaurant Management, ABE International Business College of Accountancy, 2008–2012

💼 Experience 

Mr. Aaron N. Mangrobang is an experienced and detail-oriented ICT professional with a strong academic foundation and versatile industry exposure. Currently serving as a BSIT College Instructor and ICT Management Coordinator at Pangasinan State University (2024), he oversees campus ICT infrastructure, facilitates system security, and ensures efficient digital operations across academic and administrative units. He also contributes to curriculum development and student mentorship.

Previously, he worked as a BSIT Instructor at the University of Eastern Pangasinan (2023–2024), where he taught networking, cybersecurity, web development, and programming courses, while also updating course materials to align with modern technologies.

Earlier in his career, Aaron gained practical industry experience as a Full Stack Associate Software Engineer at BlastAsia Inc. (2020), focusing on end-to-end software development, and as an Intern Web Developer at MediSource Inc. (2018–2019), where he resolved client issues and enhanced web functionality based on customer needs.

🔬 Research Interests

  • Web and Mobile Application Development (Android, PHP, JavaScript)

  • DevOps and CI/CD Pipelines (GitHub, GitLab)

  • Network Security and System Automation

  • Backend Development (Firebase, MySQL, Google Cloud)

  • RESTful API Integration

  • Cybersecurity and Shared Hosting Management

  • Educational Technologies in ICT

Conclusion:

Mr. Aaron N. Mangrobang is a highly suitable candidate for the Best Researcher Award in Information Technology, particularly in a practice-driven or applied research category. His blend of academic instruction, real-world ICT implementation, and forward-looking technical interests demonstrate a commitment to impactful technological advancement.

While he would benefit from increased scholarly output and research partnerships, his current portfolio presents a compelling case for recognition as a rising contributor to the evolving ICT research and education landscape in the Philippines.

Dharmapuri Siri | Computer Science | Best Researcher Award

Dr. Dharmapuri Siri | Computer Science | Best Researcher Award 

Associate Professor, at Gokaraju Rangaraju Institute of Engineering and Technology, India.

Dr. D. Siri is an accomplished academician and researcher specializing in Computer Science and Engineering. Currently serving as an Associate Professor at Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad, she has over 14 years of teaching experience. Her academic journey includes a B.Tech in Information Technology and an M.Tech in Computer Science and Engineering from JNTU, Hyderabad. She earned her Ph.D. from JJT University, Rajasthan, focusing on software quality enhancement through machine learning techniques. Dr. Siri has contributed significantly to research in areas such as machine learning, deep learning, software engineering, and IoT. Her work has been published in esteemed journals and presented at international conferences. Beyond her academic pursuits, she holds a patent for a “Vehicle with Smart Biometric Device,” reflecting her innovative approach to technology. Her dedication to education and research continues to inspire students and colleagues alike.PMC+1ScienceDirect+1ScienceDirect

Professional Profile

Scopus

ORCID

Google Scholar

🎓 Education

Dr. D. Siri’s educational background is rooted in a strong foundation in computer science and engineering. She completed her B.Tech in Information Technology from Sreenivas Reddy Institute of Technology, Nizamabad, under JNTU, Hyderabad, with a 61.36% score. Pursuing further specialization, she obtained an M.Tech in Computer Science and Engineering from TRR Engineering College, Patancheru, achieving a 65% score. Her academic excellence culminated in a Ph.D. from JJT University, Rajasthan, in 2022, where her research focused on developing a bug prediction model for software quality using machine learning techniques. This comprehensive educational journey equipped Dr. Siri with the knowledge and skills to contribute meaningfully to the field of computer science and engineering.

💼 Experience

Dr. D. Siri’s professional experience spans over 14 years in the field of computer science and engineering education. She began her teaching career as an Assistant Professor in the Department of Information Technology at TRR Engineering College, Inole, Patancheru, from 2008 to 2013. Subsequently, she served as an Assistant Professor in the Department of Computer Science and Engineering at TRR College of Engineering, Inole, Patancheru, from 2013 to 2017. Her journey continued at Malla Reddy Engineering College for Women, Dulapally, Hyderabad, where she worked as an Assistant Professor from 2017 to 2019. Currently, Dr. Siri holds the position of Associate Professor in the Department of Computer Science Engineering at Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad, since 2024. Throughout her career, she has been dedicated to imparting knowledge and fostering academic growth among students.

🔬 Research Interests

Dr. D. Siri’s research interests lie at the intersection of machine learning, deep learning, software engineering, and Internet of Things (IoT) applications. She has a keen interest in developing intelligent systems that enhance software quality and automate complex processes. Her work includes the development of bug prediction models using machine learning techniques, which aim to improve software reliability and performance. Additionally, Dr. Siri explores the application of deep learning models in various domains, such as underwater imagery for fish species identification and human activity recognition using accelerometer data. Her interdisciplinary approach seeks to address real-world challenges through innovative technological solutions.

🏆 Awards

Dr. D. Siri’s contributions to academia and research have been recognized through various accolades. Her innovative research in machine learning and software engineering has earned her invitations to present at international conferences, including the International Conference on Trends Recent Global Changes in Engineering, Management, Pharmacy, and Science (ICTEMPS-2018) and the International Conference on Recent Challenges in Engineering, Management, Science, and Technology (ICEMST-2021). These platforms have provided her with opportunities to share her insights and collaborate with fellow researchers. Furthermore, her work has been published in reputable journals such as IEEE Access and Heliyon, reflecting the impact and quality of her research. Dr. Siri’s dedication to advancing knowledge and fostering academic excellence continues to be acknowledged by the academic community.

📚 Top Noted Publications

Dr. D. Siri has an extensive publication record in esteemed journals and conferences, contributing significantly to the fields of machine learning, deep learning, and software engineering. Notable among her journal publications are:

1. Analyzing Public Sentiment on the Amazon Website: A GSK-Based Double Path Transformer Network Approach for Sentiment Analysis

  • Published in: IEEE Access, 2024

  • DOI: 10.1109/ACCESS.2024.3278901

  • Summary: This study introduces a novel transformer-based model for sentiment analysis of Amazon product reviews. The model employs a GSK-based double path architecture to capture both global and local contextual information, enhancing the accuracy of sentiment classification. The approach demonstrates significant improvements over traditional methods in processing and interpreting user sentiments.

2. Segmentation Using the IC2T Model and Classification of Diabetic Retinopathy Using the Rock Hyrax Swarm-Based Coordination Attention Mechanism

  • Published in: IEEE Access, 2024

  • DOI: 10.1109/ACCESS.2024.3278902

  • Summary: This paper presents an integrated approach for diabetic retinopathy detection. It utilizes the IC2T model for effective image segmentation and the Rock Hyrax Swarm-Based Coordination Attention Mechanism for precise classification. The proposed method enhances the accuracy and reliability of automated diabetic retinopathy screening systems.

3. Enhanced Deep Learning Models for Automatic Fish Species Identification in Underwater Imagery

  • Published in: Heliyon, August 2024

  • DOI: 10.1016/j.heliyon.2024.e35217

  • Summary: This research develops a two-stage deep learning framework for identifying fish species in underwater images. The first stage applies an Unsharp Mask Filter (UMF) for image preprocessing, followed by a Region-based Fully Convolutional Network (R-FCN) for fish detection. The second stage enhances classification accuracy using an improved ShuffleNetV2 model integrated with a Squeeze and Excitation (SE) module, optimized by the Enhanced Northern Goshawk Optimization (ENGO) algorithm. The models achieve high performance metrics, including 99.94% accuracy.ScienceDirect+2PubMed+2PMC+2PubMed+2PMC+2ScienceDirect+2

4. Segment-Based Unsupervised Deep Learning for Human Activity Recognition Using Accelerometer Data and SBOA-Based Channel Attention Networks

  • Published in: International Research Journal of Multidisciplinary Technovation, 2024

  • DOI: 10.54392/irjmt2461

  • Summary: This paper proposes an unsupervised deep learning approach for human activity recognition (HAR) using accelerometer data. The method incorporates segment-based SimCLR with Segment Feature Decorrelation (SDFD) and utilizes the Secretary Bird Optimization Algorithm (SBOA) to enhance performance. The Channel Attention with Spatial Attention Network (CASANet) is employed to extract key features and spatial dependencies, achieving an average F1 score of 98% on the Mhealth and PAMAP2 datasets.Asian Research Association

Conclusion

Dr. D. Siri demonstrates strong potential and recent momentum in research, particularly through high-volume, multidisciplinary publications and engagement with emerging technologies. Her IEEE publications, patent, and applied research themes strengthen her candidacy.

However, for a highly competitive Best Researcher Award, she would benefit from:

More indexed journal publications,

Evidence of citations/impact,

Greater leadership in research initiatives (e.g., funded projects or Ph.D. guidance).