Samir Samadov | Materials Science | Best Researcher Award

Dr. Samir Samadov | Materials Science | Best Researcher Award

Senior Researcher | Institute of Radiation Problems, Ministry of Science and Education Republic of Azerbaijan | Azerbaijan

Dr. Samir Faig Samadov is an accomplished physicist and senior researcher renowned for his work at the intersection of radiation materials science, nanotechnology, and solid-state physics. He holds dual research positions at the Institute of Radiation Problems under the Ministry of Science and Education of the Republic of Azerbaijan and the Dzhelepov Laboratory of Nuclear Problems at the Joint Institute for Nuclear Research in Russia. With a strong foundation in experimental physics, Dr. Samadov has made significant contributions to understanding defect dynamics and structural behaviors of advanced materials under extreme conditions. His work plays a vital role in developing technologies for nuclear energy, radiation shielding, and nano-optoelectronic applications.

Professional Profile

Scopus | Google scholar | Orcid

Education

Dr. Samadov earned his Ph.D. in Physics, specializing in Radiation Materials Science, from the Supreme Attestation Commission under the President of the Republic of Azerbaijan. Prior to his doctoral studies, he completed his MSc in Physics of Solid State at Azerbaijan State Pedagogical University and his BSc in General Physics at Baku State University. His academic training has equipped him with a robust theoretical and practical background in materials science, enabling him to approach research challenges with interdisciplinary expertise.

Experience

Dr. Samadov has served as a senior researcher at the Institute of Radiation Problems, where he is part of the Department of Radiation Physics of Irregular Solids. He has concurrently held a senior research position at the Dzhelepov Laboratory of Nuclear Problems at the Joint Institute for Nuclear Research in Dubna, Russia. In both roles, he has been involved in cutting-edge research on the impact of radiation and thermal environments on semiconductor structures, ceramics, and nanomaterials. His collaborative efforts span national and international research groups, contributing to joint studies and scientific innovation.

Research Interests

Dr. Samadov’s research centers on investigating radiation-induced defects and structural changes in nanocrystals, ceramics, and semiconductors under conditions such as gamma irradiation, ion beams, high temperatures, and pressure. Utilizing advanced techniques like positron annihilation lifetime spectroscopy (PALS), Doppler broadening spectroscopy, XRD, SEM, SANS, Raman spectroscopy, and thermal analyses (TGA/DSC), he has contributed to the development of materials with enhanced radiation resistance and thermal stability. His work has implications for the advancement of nuclear reactor components, radiation shielding solutions, and next-generation optoelectronic devices.

Honors

Dr. Samadov was awarded the Ph.D. in Physics with a specialization in Radiation Materials Science, recognizing his valuable contribution to understanding the behavior of solid-state materials under irradiation. His international collaborations and consistent publication in high-impact journals reflect peer recognition of his contributions to the scientific community. His research work, especially those involving positron annihilation spectroscopy and radiation damage analysis, has positioned him as a leading voice in materials science in the region.

Top Noted Publications

Investigating the crystal structure of ZrB₂ under varied conditions of temperature, pressure, and swift heavy ion irradiation
Citations: 20
Year: 2024

Study defects formation mechanism in La₁₋ₓBaₓMnO₃ perovskite manganite by positron annihilation lifetime and Doppler broadening spectroscopy
Citations: 16
Year: 2024

Investigating the impact of gamma irradiation and temperature on vacancy formation and recombination in ZrB₂ ceramics using positron annihilation spectroscopy
Citations: 10
Year: 2024

Dielectric and electrical properties of near-surface layers of TlInS₂ crystals under the proton irradiation
Citations: 10
Year: 2019

Positron annihilation lifetime and Doppler broadening spectroscopies studies of defects in nano TiN crystal under gamma irradiation and high temperature
Citations: 9
Year: 2024

Conclusion

Dr. Samir Samadov is a highly capable and forward-thinking researcher whose work bridges theoretical insights and applied innovations in materials science. His expertise in advanced spectroscopy techniques and radiation effects on solids has contributed to significant advancements in the fields of energy, aerospace, and nanoelectronics. With strong academic foundations, prolific publication history, and international research experience, Dr. Samadov is poised for continued success and leadership in global scientific initiatives. His work not only enhances our understanding of radiation-material interactions but also contributes to technological resilience in critical sectors.

Assoc. Prof. Dr Zhigang YU | Alloys Design | Best Researcher Award |

Assoc. Prof. Dr. Zhigang YU | Alloys Design | Best Researcher Award

Associate Professor , at Shanghai University,China.

Assoc. Prof. Dr. Zhigang Yu is a dedicated and innovative researcher in the field of materials science, currently serving as an Associate Professor at Shanghai University, China. With a strong academic background and deep expertise in computational thermodynamics, magnesium alloys, and materials informatics, Dr. Yu is contributing significantly to advancing lightweight metal research using artificial intelligence and multi-scale simulation tools. His commitment to interdisciplinary research and academic leadership has earned him recognition in both national and international scientific communities.

Professional Profile

Scopus

Orcid

Education 🎓

Dr. Yu completed his Ph.D. in Materials Science from Shanghai University in July 2019, following his Master’s degree from the same institution in August 2015. He began his academic journey with a Bachelor’s degree in Materials Engineering from Yantai University, graduating in June 2012. His educational path reflects a steady and focused progression into advanced materials design and theoretical modeling.

Experience 💼

Dr. Yu has built a solid academic career at Shanghai University, where he currently holds the position of Associate Professor since October 2022. Prior to this role, he contributed as a Postdoctoral Researcher from January 2020 to September 2022, working on cutting-edge research in alloy thermodynamics and computational methods. His experience bridges both teaching and high-impact research, demonstrating his ability to mentor students and lead innovative projects.

Research Interests 🔬

Dr. Yu’s research centers around the thermodynamics and design of magnesium alloys, with a strong emphasis on multi-scale computational methods, first-principles calculations, and the integration of machine learning techniques for alloy prediction and optimization. His interdisciplinary approach aims to enhance the efficiency, performance, and sustainability of next-generation materials for structural and energy-related applications.

Awards 🏆

Dr. Yu has received several accolades in recognition of his research excellence and academic contributions. Notably, he was selected as an Awardee of the Shanghai Oriental Talents Program in 2023. He also won the Best Paper Award in the Magnesium Alloy section at the 4th International Conference on Non-Ferrous Materials in 2024. In addition, he has served as an Invited Speaker at the 8th Asian Conference on Materials and Data (2024), and is currently a member of the Youth Committee of the Editorial Board for the Journal of Materials Informatics (2025–2026).

Top Noted Publications 📚

Title: Local chemical fluctuation-tailored hierarchical heterostructure overcomes strength-ductility trade-off in high entropy alloys
Authors: Cai Pengcheng, Liu Jiaheng, Luan Jun, Yu Zhigang, Chou Kuochih
Citations: 2
Index: Journal of Materials Science and Technology
Year of Publication: 2025

Title: High temperature oxidation behavior of the dual-phase AlCoCr₀.₅Fe₂.₅Ni₂.₅ and single phase Al₀.₂₅CoCrFeNi high entropy alloys
Authors: Hu Han, Li Fangjie, Liu Min, Shen Qin, Yu Zhigang
Citations: 1
Index: Intermetallics
Year of Publication: 2025

Conclusion

With a unique blend of theoretical knowledge, computational skill, and a vision for data-driven materials innovation, Assoc. Prof. Dr. Zhigang Yu stands out as a rising leader in his field. His research not only addresses fundamental scientific questions but also contributes to practical advancements in sustainable materials development. His consistent contributions, recognition, and leadership roles make him a strong candidate for the Best Researcher Award and a valuable asset to the global scientific community.