Fabio Domenici | Materials Science | Research Excellance Award

Assoc. Prof. Dr. Fabio Domenici | Materials Science | Research Excellance Award

Professor | The University of  Università degli Studi di Roma “Tor Vergata” | Italy

Assoc. Prof. Dr. Fabio Domenici is a researcher in physical chemistry and biophysics with expertise in ultrasound–matter interactions, biomimetic membranes, and functional polymer systems for biomedical applications. His scientific work centers on the design and characterization of polymer- and lipid-shelled ultrasound contrast agents, phase-change droplets for theranostics and radiation dosimetry, and responsive nanocarriers for targeted drug delivery. He also investigates nano-biosensing platforms based on plasmonic nanoparticles and aptamer-functionalized polymer interfaces, as well as thermo-lyotropic surfactant assemblies interacting with DNA and antimicrobial peptides. His research integrates advanced spectroscopic, imaging, and modeling approaches to address challenges in diagnostics, therapy, and translational nanomedicine. He has authored 80 scientific documents, receiving 1,148 citations, with an h-index of 20, demonstrating sustained impact across biophysics, polymer science, and nanotechnology.

                        Citation Metrics (Scopus)

1500

1250

1000

750

500

250

0

 

Citations
1148
Documents
80
h-index
20

Citations

Documents

h-index

View Scopus Profile  View ORCID Profile View Research Gate Profile

Featured Publications

 

Snežana Đurković | Materials Science | Best Scholar Award

Ms. Snežana Đurković | Materials Science | Best Scholar Award

Junior Research Assistant | The University of Institute for Nuclear Sciences Vinča | Serbia

Snežana Đurković is a researcher in applied physics and informatics with expertise in optical materials, luminescence spectroscopy, and data-driven materials science. Her research focuses on the investigation of luminescent phosphors activated by transition metal ions, combining experimental spectroscopy with supervised machine learning and physics-informed artificial intelligence approaches. She studies structure property relationships governing emission behavior, energy transfer mechanisms, and thermal stability relevant to optical sensing and solid-state lighting applications. Her work aims to enhance predictive modeling of luminescence properties to accelerate materials design and optimization. Scientific interests include optical characterization techniques, radiation–matter interactions, AI-assisted analysis of spectroscopic data, and the development of functional materials for sensors, photonic devices, and LED technologies.

Nana Ma | Computational Chemistry | Research Excellance Award

Prof. Nana Ma | Computational Chemistry | Research Excellance Award

Professor | The University of Henan Normal University | China

Prof. Nana Ma is an internationally recognized researcher in theoretical and computational chemistry, with a strong focus on density functional theory–based investigations of nonlinear optical (NLO) materials, catalytic reaction mechanisms, and functional molecular systems. Her research advances fundamental understanding of redox-switchable NLO responses, CO₂ activation and conversion, hydroboration chemistry, photo- and electro-catalysis, polyoxometalates, metallacarboranes, and organometallic complexes. Through rigorous mechanistic modeling, her work bridges molecular electronic structure with reactivity, selectivity, and materials performance, contributing to the rational design of catalysts and optoelectronic materials. She has published extensively in leading international journals, demonstrating consistent scholarly impact, with 171 documents, 3,686 citations, and an h-index of 31, underscoring her sustained influence in theoretical chemistry research.

                        Citation Metrics (Scopus)

4800

4000

3200

2400

1600

800

0

 

Citations
3686
Documents
171
h-index
31

Citations

Documents

h-index

View Scopus Profile  View ORCID Profile View Research Gate Profile

Featured Publications

 

KyongHo Sim | Materials Science and Technology | Best Researcher Award

Prof. KyongHo Sim | Materials Science and Technology | Best Researcher Award

Professor at Kim Chaek University of Technology, North Korea.

Prof. Kyong Ho Sim is a materials scientist and academic at Kim Chaek University of Technology, where he has contributed to the field of advanced structural materials since 2010. His doctoral work, completed in collaboration with Harbin Institute of Technology, focused on the microstructural development and mechanical performance of ultra-high strength alloys using powder metallurgy techniques. His expertise in modeling hot deformation behavior and developing processing routes for next-generation materials places him at the forefront of metallurgical research in the region. Prof. Sim is especially known for his work on Ti₂AlNb alloys, which are key materials for aerospace and high-performance applications.

Professional Profile

Scopus 

Orcid

🎓 Education 

  • B.Sc. in Materials Science and Technology, Kim Chaek University of Technology, North Korea, 2006

  • Ph.D. in Materials Science and Engineering, Jointly pursued at Kim Chaek University of Technology and National Key Laboratory of Precision Hot Processing of Metals, Harbin Institute of Technology, China, awarded in 2022

💼 Experience 

Prof. Kyong Ho Sim has been serving as a researcher at the Faculty of Materials Science and Technology, Kim Chaek University of Technology since 2010. Over the years, he has specialized in the thermo-mechanical processing of advanced engineering materials. His academic progression culminated in the successful completion of a Ph.D. program in 2022, during which he conducted research at the prestigious Harbin Institute of Technology’s National Key Laboratory. Prof. Sim has contributed significantly to the development of ultra-fine grained materials and constitutive modeling, with a focus on titanium-based and aluminum alloys used in high-strength and high-temperature applications.

🔬 Research Interests

  • Thermo-mechanical processing of advanced engineering materials

  • Powder metallurgy of ultra-fine grained alloys

  • Hot deformation behavior of titanium alloys, ultra-high strength steels, and nickel-based superalloys

  • Spark plasma sintering and mechanical alloying

  • Constitutive modeling (Zerilli-Armstrong, Khan-Huang-Liang models)

  • Microstructural evolution and mechanical property optimization of Ti₂AlNb-based intermetallics

Author Metrics

  • Publications: Multiple articles published in SCI-indexed journals, especially in Journal of Alloys and Compounds and Vacuum

  • Citation Highlights:

    • Microstructure and mechanical properties of a Ti-22Al-25Nb alloy fabricated from elemental powders by mechanical alloying and spark plasma sintering, Journal of Alloys and Compounds, 704, 425–433 (2017)

    • Modified Zerilli-Armstrong and Khan-Huang-Liang constitutive models to predict hot deformation behavior in a powder metallurgy Ti-22Al-25Nb alloy, Vacuum, 210, 111749 (2023)

  • Areas of Impact: Powder metallurgy, thermomechanical processing, constitutive modeling, and advanced alloy design

  • Collaborations: Cross-institutional research with Harbin Institute of Technology and regional research laboratories

Top Noted Publications:

1. Modified Zerilli-Armstrong and Khan-Huang-Liang Constitutive Models to Predict Hot Deformation Behavior in a Powder Metallurgy Ti-22Al-25Nb Alloy

  • Journal: Vacuum

  • Publication Year: 2023

  • DOI: 10.1016/j.vacuum.2022.111749
  • EID (Scopus): 2-s2.0-85146430765

  • ISSN: 0042-207X

  • Authors: Sim, K.H.; Ri, Y.C.; Jo, C.H.; Kim, O.J.; Kim, R.S.; Pak, H.

  • Publisher: Elsevier

  • Abstract Summary: This study applies modified Zerilli-Armstrong and Khan-Huang-Liang models to characterize the hot deformation behavior of a Ti-22Al-25Nb alloy processed via powder metallurgy, offering accurate predictions of flow stress under various thermomechanical conditions.

2. Constitutive Modeling of a Fine-Grained Ti₂AlNb-Based Alloy Fabricated by Mechanical Alloying and Subsequent Spark Plasma Sintering

  • Journal: Advanced Engineering Materials

  • Publication Year: 2021

  • DOI: 10.1002/adem.202000987

  • EID (Scopus): 2-s2.0-85097672128

  • ISSN: 1527-2648 (Print), 1438-1656 (Online)

  • Authors: Sim, K.-H.; Li, Y.C.; Li, C.-H.; Kim, M.-O.; Kim, H.-C.

  • Publisher: Wiley-VCH

  • Abstract Summary: The article investigates the flow stress behavior and constitutive equations for a fine-grained Ti₂AlNb alloy fabricated via mechanical alloying and spark plasma sintering, contributing to its potential applications in aerospace.

3. Effect of Sb–Ba–Ce–Si–Fe Post Inoculants on Microstructural and Mechanical Properties of As-Cast Pearlitic Ductile Iron

  • Journal: Steel Research International

  • Publication Year: 2019

  • DOI: 10.1002/srin.201800530

  • EID (Scopus): 2-s2.0-85059352544

  • ISSN: 1869-344X (Print), 1611-3683 (Online)

  • Authors: Lia, B.-G.; Sim, K.-H.; Kim, R.-C.

  • Publisher: Wiley-VCH

  • Abstract Summary: This work evaluates how different post-inoculant combinations affect the microstructure and mechanical performance of as-cast pearlitic ductile iron, optimizing properties for industrial applications.

4. FE Simulation of the Influence of Roll Diameter Difference on the Plate Curvature During Hot Plate Rolling

  • Journal: Steel Research International

  • Publication Year: 2019

  • DOI: 10.1002/srin.201800007

  • EID (Scopus): 2-s2.0-85044867339

  • ISSN: 1869-344X (Print), 1611-3683 (Online)

  • Authors: Son, R.-C.; Sim, K.-H.; Sin-Ho, O.

  • Publisher: Wiley-VCH

  • Abstract Summary: Finite element simulation is used to study how differences in roll diameter influence plate curvature during hot rolling, with implications for flatness control in steel production.

5. Status of Titanium Alloy Industry for Aviation in the World and Development Strategy of Chinese Enterprises

  • Journal: DEStech Transactions on Social Science, Education and Human Science

  • Publication Date: January 22, 2019

  • DOI: 10.12783/dtssehs/emse2018/27191

  • ISSN: 2475-0042

  • Authors: Kyong-Ho Sim; Guo-feng Wang; Tae-Jong Kim

  • Publisher: DEStech Publications

  • Abstract Summary: This article provides a strategic analysis of the global titanium alloy industry for aviation, with a focus on China’s competitive development and industrial outlook.

Conclusion:

Prof. KyongHo Sim exemplifies a high-impact researcher in the field of Materials Science and Technology, with a strong academic foundation, innovative modeling work, and significant contributions to next-generation alloy development. His demonstrated expertise in ultra-fine grained materials, thermo-mechanical processing, and constitutive modeling make him an excellent nominee for the Research for Best Researcher Award.

He is particularly deserving of recognition in categories such as:

  • Advanced Alloy Research Award

  • Best Researcher in Metallurgical Engineering Award

  • Thermo-Mechanical Materials Innovation Award

  • Titanium Alloy Research Excellence Award

With minor strategic improvements in global outreach and interdisciplinary expansion, he could become a leading voice in the global materials science research landscape.