Mr. Fuhao Chang | Generative Artificial Intelligence | Best Researcher Award |

Mr. Fuhao Chang | Generative Artificial Intelligence | Best Researcher Award

Master’s student at China Agricultural University, Beijing, China.

Mr. Fuhao Chang is a talented and rapidly emerging researcher in the field of Generative Artificial Intelligence, with a strong academic and technical foundation in computer technology and IoT engineering. Currently pursuing his Master’s degree at China Agricultural University, he is recognized for his innovative contributions to generative modeling, multimodal AI systems, and time-series simulation. With a passion for deep learning, diffusion models, and transformer architectures, Fuhao combines academic rigor with hands-on expertise, actively contributing to both research and industry-relevant AI applications.

Professional Profile

Scopus 

Google Scholar

🎓 Education 

Mr. Chang is a graduate student at China Agricultural University, a top-tier “985” institution in China, where he is pursuing a Master’s degree in Computer Technology (2023–2026). He entered the program as a recommended student (保送生), reflecting his academic excellence. Prior to this, he completed his undergraduate studies at Wuhan University of Engineering, majoring in the Internet of Things Engineering. With a GPA of 3.68/4.0, he graduated as an Outstanding Graduate within the top 5% of his class.

💼 Experience 

Fuhao gained valuable industry experience during his internship at Beijing Century Good Future Education Technology Co., Ltd., where he worked on the integration of large-scale multimodal models with Stable Diffusion for geometric image editing. His contributions included vocabulary extension of LLaVA models, fine-tuning through LoRA, and the development of bi-directional interactive modules for precise alignment between image and text features. He has also been involved in the deployment of several cutting-edge models such as LLaMA2, Qwen2-VL, SAM2, and FLUX, using multi-GPU/NPU distributed training environments.

🔬 Research Interests

Mr. Chang’s research centers on generative AI, multimodal interaction, and time-series forecasting. He has worked extensively with diffusion models, transformer-based architectures, and probabilistic forecasting techniques. A major focus of his work has been on improving the decoder and loss functions of diffusion transformers to enhance temporal dynamic simulation, integrating Fourier transforms and polynomial fitting into attention mechanisms. His innovations have led to performance improvements of over 30% in uncertainty and temporal accuracy. His recent work on stochastic weather simulation for photovoltaic integration has been well-received by top journals.

Honors & Awards 

Fuhao has earned numerous accolades at both national and provincial levels. He is a certified System Architect (高级工程师) and Software Designer, and holds CET-6 English language certification (Score: 476). His awards include the National Second Prize in the 2023 China University Digital Skills Competition, the Third Prize in the 2022 Lanqiao Cup National Software Competition, and another National Second Prize in the 2021 National University Computer Skills Challenge. He also holds more than nine provincial and five university-level honors.

Top Noted Publications:

1. Crop Pest Image Recognition Based on the Improved ViT Method
Authors: X. Fu, Q. Ma, F. Yang, C. Zhang, X. Zhao, F. Chang, L. Han
Citations: 59
Index: SCI – Information Processing in Agriculture
Year: 2024

2. Simulation and Forecasting of Fishery Weather Based on Statistical Machine Learning
Authors: X. Fu, C. Zhang, F. Chang, L. Han, X. Zhao, Z. Wang, Q. Ma
Citations: 11
Index: SCI – Information Processing in Agriculture
Year: 2024

3. Stochastic Scenario Generation Methods for Uncertainty in Wind and Photovoltaic Power Outputs: A Comprehensive Review
Authors: K. Zheng, Z. Sun, Y. Song, C. Zhang, C. Zhang, F. Chang, D. Yang, X. Fu
Citations: 1
Index: SCI – Energies
Year: 2025

4. Revolutionising Agri‐Energy: A Comprehensive Survey on the Applications of Artificial Intelligence in Agricultural Energy Internet
Authors: X. Fu, W. Ye, X. Li, X. Zeng, Y. Wang, F. Chang, J. Zhang, R. Liu
Citations: 1
Index: SCI – Energy Internet
Year: 2024

5. Knowledge-Integrated GAN Model for Stochastic Time-Series Simulation of Year-Round Weather for Photovoltaic Integration Analysis
Authors: X. Fu, F. Chang, H. Sun, P. Zhang, Y. Zhang
Citations: Not yet indexed
Index: SCI – IEEE Transactions on Power Systems
Year: 2025

Conclusion:

Mr. Fuhao Chang is a standout example of a new generation of AI researchers who blend deep technical understanding with practical, impactful innovation. His strong academic background, research achievements, and commitment to advancing AI technologies make him a worthy candidate for prestigious recognitions such as the Best Researcher Award. With continued growth in global collaboration and communication, Fuhao is poised to make significant contributions to the field of AI on both national and international stages.

Dr Han Gao | Artificial Intellegence | Best Researcher Award |

Dr. Han Gao | Artificial Intellegence | Best Researcher Award

postdoctoral fellow, at Harvard University, United States.

Dr. Han Gao is a dedicated researcher specializing in scientific deep learning, computational mechanics, and generative models for spatiotemporal physics. With a strong background in machine learning-driven physics simulations, he has contributed significantly to advancing numerical modeling and data-driven solutions for complex physical systems. His work bridges the gap between deep learning and traditional computational fluid dynamics, with applications in turbulence modeling, inverse problems, and reduced-order modeling.

Professional Profile

Scopus

Google Scholar

Education 🎓

Dr. Gao earned his Ph.D. in Aerospace and Mechanical Engineering from the University of Notre Dame (2018–2023), where he focused on scientific deep learning for forward and inverse modeling of spatiotemporal physics. He also holds a Master’s degree in Mechanical Engineering & Materials Science from Washington University in St. Louis (2016–2018), with research on numerical simulations of jet impingement and rotor blade effects. His academic journey began with a Bachelor’s degree in Mechanical Engineering from Shanghai University of Electric Power (2012–2016).

Professional Experience 💼

Dr. Gao is currently a Postdoctoral & Teaching Fellow at Harvard University (2023–present), where he continues his research in deep learning-driven physics simulations while mentoring students. Previously, he served as a Research & Teaching Assistant at the University of Notre Dame (2018–2023) and Washington University in St. Louis (2016–2018). Additionally, he gained industry experience as a Research Intern at Google Research (2022), where he worked on advanced AI-driven physics simulations.

Research Interests 🌍

Dr. Gao’s research revolves around the integration of deep learning techniques with physics-based modeling, particularly in solving partial differential equations (PDEs), turbulence modeling, generative models, and reduced-order modeling. He has developed novel physics-informed neural networks (PINNs), Bayesian generative models, and machine-learning frameworks for high-dimensional complex systems. His work is widely applicable in computational fluid dynamics (CFD), climate modeling, aerodynamics, and engineering simulations.

Awards & Honors 🏆

Dr. Gao has been recognized for his outstanding contributions to computational mechanics and machine learning applications in physics. His publications in top-tier journals, including Nature Communications, and prestigious machine learning conferences such as NeurIPS, ICML, and ICLR, reflect his impact in the field. He has also received competitive research opportunities, including a Google Research internship, showcasing his industry relevance.

Top Noted Publications 📚

Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data
L. Sun, H. Gao, S. Pan, J.-X. Wang916 citationsComputer Methods in Applied Mechanics and Engineering, 2020

PhyGeoNet: Physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain
H. Gao, L. Sun, J.-X. Wang567 citationsJournal of Computational Physics, 2021

Physics-informed graph neural Galerkin networks: A unified framework for solving PDE-governed forward and inverse problems
H. Gao, M. J. Zahr, J.-X. Wang240 citationsComputer Methods in Applied Mechanics and Engineering, 2022

Super-resolution and denoising of fluid flow using physics-informed convolutional neural networks without high-resolution labels
H. Gao, L. Sun, J.-X. Wang214 citationsPhysics of Fluids, 2021

Predicting physics in mesh-reduced space with temporal attention
X. Han, H. Gao, T. Pfaff, J.-X. Wang, L.-P. Liu106 citationsICLR, 2022

Conclusion

Dr. Han Gao is a highly promising researcher with a strong publication record, interdisciplinary expertise, and experience at prestigious institutions. His contributions to scientific deep learning and computational mechanics make him a strong contender for the Best Researcher Award. To further solidify his case, he could focus on gaining more individual recognitions, expanding his leadership roles, and demonstrating the real-world impact of his research.