Hongming Zhang | Engineering | Best Researcher Award

Assoc. Prof. Dr. Hongming Zhang | Engineering | Best Researcher Award

Academician | Beijing University of Posts and Telecommunications | China

Dr. Hongming Zhang is an accomplished Associate Professor at the School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, China. He earned his Ph.D. in Electrical and Electronic Engineering from the University of Southampton under the supervision of Prof. Lajos Hanzo and Prof. Lie-Liang Yang, following his M.Sc. from Southampton, B.Eng. with Honors from City, University of London, and B.Eng. in Information Engineering from Nanjing University of Aeronautics and Astronautics. Before joining BUPT, he conducted postdoctoral research at Columbia University, contributing to advancements in wireless communication technologies. His research focuses on wireless communications, heterogeneous networking, underwater acoustics, and AI-driven optimization, particularly in areas such as federated learning, intelligent reflecting surfaces, and 6G network design. As a prolific and highly cited researcher, Dr. Zhang has co-authored more than forty IEEE journal papers in collaboration with leading international scholars. His publication record includes 59 documents cited by 967 other documents, totaling 1,207 citations. He has served as an Associate Editor for Electronics Letters and a Review Editor for Frontiers in Communications and Networks. His excellence has been recognized through numerous honors, including the Boosting Project Award for Young Talents from the China Association for Science and Technology, multiple IEEE Best Paper Awards, and the Science and Technology Awards from the China Institute of Communications and the Radio Association of China. His work bridges theory and application, advancing intelligent, energy-efficient communication systems and inspiring innovation within the global telecommunications community.

Profile : Scopus | ORCID 

Featured Publications 

Zhang, H., Yang, L.-L., & Hanzo, L. (2016). Performance analysis of OFDM systems in dispersive indoor power line channels. IET Communications. [Cited by 35]

Zhang, H., Jiang, C., & Hanzo, L. (2019). Linear precoded index modulation. IEEE Transactions on Communications. [Cited by 120]

Zhang, H., & Hanzo, L. (2020). Federated learning assisted multi-UAV networks. IEEE Transactions on Vehicular Technology. [Cited by 90]

Jiang, H., Xiong, B., & Zhang, H. (2023). Hybrid far- and near-field modeling for RIS assisted V2V channels. IEEE Transactions on Wireless Communications. [Cited by 45]

Zhang, H., et al. (2024). Space-time shift keying aided OTFS modulation for orthogonal multiple access. IEEE Transactions on Communications. [Cited by 20]

Shangshang Wu | Engineering | Best Researcher Award

Dr. Shangshang Wu | Engineering | Best Researcher Award

Tianjin university | China

Wu Shangshang is a mechanical engineer pursuing her Ph.D. at the School of Mechanical Engineering, Tianjin University in China, where she also completed her B.S. and M.S. in Mechanical Engineering. Her research focuses on underwater gliders, emphasizing hydrodynamic identification, motion behavior analysis, and front-end data processing for acoustic communication. Since her master’s studies, she has worked as a graduate researcher, contributing to both experimental sea trials and theoretical modeling, and has published journal articles and conference papers in marine robotics, acoustics, and signal processing. Wu’s doctoral work advances model-based and data-driven methods to improve hydrodynamic prediction and control under uncertain underwater conditions, supporting the development of reliable seabed vehicles and underwater communication systems. She collaborates closely with colleagues at Tianjin University, including researchers such as Guangwei Lv and Shaoqiong Yang, and her early contributions are gaining citations. Her interests also include neural network–based hybrid modeling, online estimation, and mitigating the effects of environmental factors like sea currents and noise on underwater navigation and sensor performance. While no specific awards are publicly documented, Wu shows strong potential in combining experimental insights with computational techniques to enhance the design, control, and stability of underwater gliders.

Profile : Scopus| ORCID  

Featured Publications

AuthorLastName, A. A., & AuthorLastName, B. B. Model and data-driven hydrodynamic identification and prediction for underwater gliders. Physics of Fluids.

AuthorLastName, A. A., & AuthorLastName, B. B. An enhanced variational mode decomposition method for processing hydrodynamic data of underwater gliders. Measurement.

AuthorLastName, A. A., & AuthorLastName, B. B. Multi-body modelling and analysis of the motion platform for underwater acoustic dynamic communication. Applied Mathematical Modelling.