Belkacem Bekhiti | Engineering | Best Researcher Award

Prof. Belkacem Bekhiti | Engineering | Best Researcher Award

Prof. Belkacem Bekhiti | Institute of Aeronautics and Space Studies, University of Blida | Algeria

Dr. Bekhiti Belkacem is a distinguished academic and researcher in control theory, robotics, and aerospace engineering, currently serving as a Lecturer at the Institute of Aeronautics and Space Studies, Blida University 1, Algeria. His expertise spans guidance, navigation, and control systems, integrating theoretical modeling with real-world aerospace applications. He holds a Doctorate in Electrical Engineering with a specialization in Automatic Control from the University of Boumerdes, a Magister in Advanced Control of Complex Systems from the National Polytechnic School, Oran, a Master’s in Automatic Control from the University of Djelfa, and an Engineering degree in Electrical Engineering from Boumerdes. His career includes teaching positions at Blida and Djelfa Universities, collaboration with the Algerian Air Agency, and supervision of advanced student projects in UAVs, satellite control, and robotics. His research focuses on MIMO control, matrix polynomial theory, robotic modeling, nonlinear adaptive control, and intelligent aerospace system design, merging classical automation with artificial intelligence and fractional-order control. He has authored several books and numerous international publications, presented his work at major conferences, and earned recognition for his contributions to intelligent control and aerospace systems. His influence extends across the Algerian and international research communities, where he continues to inspire innovation and academic excellence in modern control and aeronautical engineering.

Profile : Google Scholar 

Featured Publications 

  • Bekhiti, B. (2015). On the theory of λ-matrices based MIMO control system design. Control and Cybernetics.

  • Bekhiti, B. (2017). Intelligent block spectral factors relocation in a quadrotor UAV. International Journal of Scientific Computing (IJSCC).

  • Bekhiti, B. (2018). On λ-matrices and their applications in MIMO control systems design. International Journal of Mathematical and Computational Intelligence (IJMIC).

  • Bekhiti, B. (2020). On the block decomposition and spectral factors of λ-matrices. Control and Cybernetics.

  • Bekhiti, B. (2020). Internal stability improvement of a natural gas centrifugal compressor. Journal of Natural Gas Science and Engineering.

Shangshang Wu | Engineering | Best Researcher Award

Dr. Shangshang Wu | Engineering | Best Researcher Award

Tianjin university | China

Wu Shangshang is a mechanical engineer pursuing her Ph.D. at the School of Mechanical Engineering, Tianjin University in China, where she also completed her B.S. and M.S. in Mechanical Engineering. Her research focuses on underwater gliders, emphasizing hydrodynamic identification, motion behavior analysis, and front-end data processing for acoustic communication. Since her master’s studies, she has worked as a graduate researcher, contributing to both experimental sea trials and theoretical modeling, and has published journal articles and conference papers in marine robotics, acoustics, and signal processing. Wu’s doctoral work advances model-based and data-driven methods to improve hydrodynamic prediction and control under uncertain underwater conditions, supporting the development of reliable seabed vehicles and underwater communication systems. She collaborates closely with colleagues at Tianjin University, including researchers such as Guangwei Lv and Shaoqiong Yang, and her early contributions are gaining citations. Her interests also include neural network–based hybrid modeling, online estimation, and mitigating the effects of environmental factors like sea currents and noise on underwater navigation and sensor performance. While no specific awards are publicly documented, Wu shows strong potential in combining experimental insights with computational techniques to enhance the design, control, and stability of underwater gliders.

Profile : Scopus| ORCID  

Featured Publications

AuthorLastName, A. A., & AuthorLastName, B. B. Model and data-driven hydrodynamic identification and prediction for underwater gliders. Physics of Fluids.

AuthorLastName, A. A., & AuthorLastName, B. B. An enhanced variational mode decomposition method for processing hydrodynamic data of underwater gliders. Measurement.

AuthorLastName, A. A., & AuthorLastName, B. B. Multi-body modelling and analysis of the motion platform for underwater acoustic dynamic communication. Applied Mathematical Modelling.