Jingyi Gao | Engineering | Best Researcher Award

Ms. Jingyi Gao | University of Virginia | United States

Ms. Jingyi Gao | University of Virginia | United States

Jingyi Gao is a Ph.D. candidate in Systems and Information Engineering at the University of Virginia with a 3.75 GPA, focusing on time series prediction, Bayesian probabilistic modeling, and federated learning. She holds an M.S. in Applied Mathematics and Statistics from the Johns Hopkins University (GPA 3.9) and dual bachelor’s degrees in Mathematics–Computer Science and Economics from the University of California, San Diego. Jingyi has extensive teaching experience, serving as a teaching assistant at UVA where she has instructed over 1,000 students across multiple courses in statistical modeling, data mining, AI, and big data systems, and previously supported courses at Johns Hopkins and UC San Diego. She has mentored underrepresented students through the Data Justice Academy and completed research internships at the University of Pittsburgh and Tencent, developing machine learning models for stress detection, healthcare data analysis, and cloud resource forecasting. Jingyi has authored several publications, including work accepted by Pattern Recognition and under review at AAAI and IISE Transactions. Her recent projects involve designing deep latent variable models for ergonomic risk assessment, developing real-time adaptive prediction frameworks for occupational health monitoring, creating federated learning approaches for multi-output Gaussian processes, and modeling behavioral regularity and predictability from multidimensional sensing signals. Combining expertise in machine learning, statistical modeling, and data-driven decision systems, Jingyi aims to advance human-centered intelligent systems through interpretable and privacy-preserving predictive modeling.

Profile: Scopus | Google Scholar

Featured Publications 

Gao, J., Rahman, A., Lim, S., & Chung, S. TimeSets: A real-time adaptive prediction framework for multivariate time series (Manuscript under review at the Association for the Advancement of Artificial Intelligence).

Gao, J., Lim, S., & Chung, S. Gait-based hand load estimation via deep latent variable models with auxiliary information (Manuscript under review at IISE Transactions).

Gao, J., & Chung, S. Federated automatic latent variable selection in multi-output Gaussian processes (Accepted for publication in Pattern Recognition)*.

Gao, J., Yan, R., & Doryab, A. Modeling regularity and predictability in human behavior from multidimensional sensing signals and personal characteristics. Proceedings of the International Conference on Machine Learning and Applications (ICMLA). Institute of Electrical and Electronics Engineers.

Chen, T., Chen, Y., Gao, J., Gao, P., Moon, J. H., Ren, J., … & Woolf, T. B. Machine learning to summarize and provide context for sleep and eating schedules. bioRxiv.

Karla Filian | Engineering | Best Researcher Award

Mrs Karla Filian |  Engineering |  Best Researcher Award

Graduate student in the Master’s program in Earth Sciences,  at Faculty of Engineering in Earth Sciences, ESPOL Polytechnic University,  Ecuador

Karla Filian Haz is a graduate student pursuing a Master’s in Earth Sciences at ESPOL Polytechnic University. With a background in Mining Engineering, she works as a Project Analyst, contributing to research and academic initiatives in Earth Sciences. Her research focuses on environmental pollution mitigation, water treatment technologies, and sustainable engineering solutions. She has co-authored two indexed journal articles and two conference papers, collaborating with international institutions such as Ghent University and the Mexican Geological Survey. Her work aims to develop innovative solutions for environmental management in mining and water treatment.

Profile:

Academic & Professional Background:

Mining Engineer pursuing a Master’s in Earth Sciences at ESPOL. Currently a Project Analyst, contributing to research, academic initiatives, and program coordination in Earth Sciences. Expertise in event organization, documentation management, and compliance.

Research & Innovations:

  • Research Projects: 4
  • Publications: 2 indexed journal articles, 2 conference papers
  • Citations: h-index: 1, Citations: 2
  • Collaborations: Ghent University (Belgium), Catholic University of Santiago de Guayaquil, Universidad del Pacífico (Ecuador), Mexican Geological Survey (SGM)

Research Areas:

Environmental engineering, pollution mitigation in mining, water treatment technologies, sustainable engineering solutions.

Key Contributions:

Research on environmental pollution, tailing dam risks, and desalination optimization using advanced membranes. Findings contribute to sustainable solutions for water treatment and environmental management in the mining industry.

Publication Top  Notes:

Title: Assessment of Environmental Pollution and Risks Associated with Tailing Dams in a Historical Gold Mining Area of Ecuador
Authors: B. Salgado-Almeida, A. Briones-Escalante, D. Falquez-Torres, E. Peña-Carpio, S. Jiménez-Oyola
Journal: Resources (2024)
Citations: 1