Konstantinos Blazakis | Engineering | Research Excellance Award

Dr. Konstantinos Blazakis | Engineering | Research Excellance Award

Adjunct professor | Hellenic Mediterranean University | Greece

Dr. Konstantinos Blazakis is an electrical and computer engineer and AI researcher specializing in smart energy systems, renewable energy analytics, and advanced machine learning. His work integrates artificial intelligence, quantum machine learning, and power systems, with a strong focus on electricity theft detection, forecasting, and smart grid optimization. He has advanced academic training in electrical and computer engineering, smart grid measurement processing, and applied mathematics and physics, enabling a multidisciplinary approach to energy challenges. His professional background spans university-level teaching, EU-funded renewable energy and photovoltaic research projects, smart grid resilience studies, and contributions to industrial photovoltaic installations and power network design. His research interests include machine learning and deep learning for energy forecasting, smart meter data analytics, quantum neural networks, vehicle-to-grid modeling, and energy market analysis, as well as emerging nanoelectronic devices for next-generation sensing and computing. His work supports the development of resilient, intelligent, and low-carbon energy infrastructures.

Citation Metrics (Scopus)

120

100

80

60

40

20

0

Citations
107

Documents
11

h-index
4

        🟦 Citations    🟥 Documents    🟩 h-index


View Scopus Profile
View Google Scholar Profile

Featured Publications

Ehsan Khajavian | Engineering | Research Excellance Award

Mr. Ehsan Khajavian | Engineering | Research Excellance Award

Research Assistant | Ferdowsi University of Mashhad | Iran

Mr. Ehsan Khajavian is a materials and corrosion engineer with strong academic and industrial expertise in corrosion protection, electrochemical analysis, and surface engineering. He holds advanced training in corrosion and protection of materials and materials and metallurgical engineering, with a focus on electrochemical methods, microstructural engineering, and functional surface fabrication. His experience spans academic laboratory supervision, teaching support, and senior industrial roles in technical engineering, metallurgy, and equipment refurbishment. He has contributed to international journals and industrial R&D projects involving corrosion-resistant coatings, casting systems, surface modification, electrochemical instrumentation, and production-line optimization. His research interests center on corrosion science, electrochemical characterization techniques, functional and superhydrophobic surfaces, nanostructured coatings, friction stir processing, and applied corrosion engineering, integrating laboratory-scale research with real-world industrial challenges to deliver durable and scalable materials solutions.

Citation Metrics (Scopus)

100

80

60

40

20

0

Citations
72

Documents
3

h-index
2

        🟦 Citations    🟥 Documents    🟩 h-index


View Scopus Author Profile


View Google Scholar Author Profile

Featured Publications


Corrosion Protection Strategies for Industrial Equipment Using Electrochemical Techniques

– Materials & Corrosion Research

Zhi Zong | Engineering | Best Researcher Award

Prof. Dr. Zhi Zong | Engineering | Best Researcher Award

Fuyao University of Science and Technology | China

Professor Zhi Zong is an internationally acclaimed researcher in naval architecture, ocean engineering, computational mechanics, and fluid–structure interaction, widely recognized for his influential contributions to marine hydrodynamics and advanced numerical simulation. With 334 publications, 5,653 citations, and an h-index of 38 (Scopus), his research covers underwater explosion (UNDEX) physics, nonlinear water waves, bubble dynamics, vortex-induced vibration (VIV), unsteady cavitation, water-entry dynamics, and high-fidelity computational fluid mechanics, employing cutting-edge techniques such as SPH, DEM, and data-driven modeling. He has authored over 460 scientific papers, including more than 230 SCI-indexed articles, and has been continuously listed among the Top 2% Scientists globally (2021–2025). His seven authoritative monographs published with Elsevier, Taylor & Francis/CRC, and Science Press span differential quadrature methods, solitary wave theory, computational underwater explosion mechanics, and bubble damage modeling. Professor Zong’s research has significantly advanced understanding of shock loading on marine structures, hydrodynamic impact, cavitating and multiphase flows, ice–structure interactions, ship motion reduction, and complex multi-physics simulations, with many of his highly cited publications regarded as landmark contributions to SPH modeling, multiphase flow analysis, UNDEX damage prediction, and VIV dynamics.

Profiles: Scopus| Google Scholar | ResearchGate

Featured Publications 

• Liu, M. B., Liu, G. R., Lam, K. Y., & Zong, Z. (2003). Smoothed particle hydrodynamics for numerical simulation of underwater explosion. Computational Mechanics, 30(2), 106–118.

• Liu, M. B., Liu, G. R., Zong, Z., & Lam, K. Y. (2003). Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology. Computers & Fluids, 32(3), 305–322.

• Zong, Z., & Zhang, Y. (2009). Advanced differential quadrature methods. Chapman and Hall/CRC.

• Chen, Z., Zong, Z., Liu, M. B., Zou, L., Li, H. T., & Shu, C. (2015). An SPH model for multiphase flows with complex interfaces and large density differences. Journal of Computational Physics, 283, 169–188.

• Zhang, Y. Y., Wang, C. M., Duan, W. H., Xiang, Y., & Zong, Z. (2009). Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes. Nanotechnology, 20(39), 395707.