Konstantinos Blazakis | Engineering | Research Excellance Award

Dr. Konstantinos Blazakis | Engineering | Research Excellance Award

Adjunct professor | Hellenic Mediterranean University | Greece

Dr. Konstantinos Blazakis is an electrical and computer engineer and AI researcher specializing in smart energy systems, renewable energy analytics, and advanced machine learning. His work integrates artificial intelligence, quantum machine learning, and power systems, with a strong focus on electricity theft detection, forecasting, and smart grid optimization. He has advanced academic training in electrical and computer engineering, smart grid measurement processing, and applied mathematics and physics, enabling a multidisciplinary approach to energy challenges. His professional background spans university-level teaching, EU-funded renewable energy and photovoltaic research projects, smart grid resilience studies, and contributions to industrial photovoltaic installations and power network design. His research interests include machine learning and deep learning for energy forecasting, smart meter data analytics, quantum neural networks, vehicle-to-grid modeling, and energy market analysis, as well as emerging nanoelectronic devices for next-generation sensing and computing. His work supports the development of resilient, intelligent, and low-carbon energy infrastructures.

Citation Metrics (Scopus)

120

100

80

60

40

20

0

Citations
107

Documents
11

h-index
4

        🟦 Citations    🟥 Documents    🟩 h-index


View Scopus Profile
View Google Scholar Profile

Featured Publications

Afera Halefom Teka | Engineering | Research Excellance Award

Mr. Afera Halefom Teka | Engineering | Research Excellance Award

Afera Halefom Teka | University of Chinese Academy of Sciences | Ethiopia

Mr. Afera Halefom Teka is a researcher specializing in cartography, geospatial analysis, hydrology, and land–environment interactions, with strong expertise in GIS, remote sensing, and water resources modeling. His work addresses land use change, hydrological processes, watershed vulnerability, and environmental sustainability across diverse landscapes. With experience in academic teaching, research leadership, and interdisciplinary collaborations, he contributes to evidence-based geospatial solutions for climate resilience, watershed management, and sustainable land–water governance. His research applies spatial modeling, multi-criteria evaluation, machine learning, and advanced cartographic visualization to examine land use dynamics, climate variability, soil erosion risk, groundwater potential, and environmental change detection. He has also taken part in international trainings, conferences, and collaborative projects advancing geospatial applications for disaster risk reduction and resource planning. His contributions have been recognized through academic distinctions, research committee leadership roles, competitive training selections, and conference acknowledgments.

Citation Metrics (Google Scholar)

1000

800

600

400

200

0

Citations
973

Documents
26

h-index
18

        🟦 Citations    🟥 Documents    🟩 h-index


View Google Scholar Profile

Featured Publications