Afera Halefom Teka | Engineering | Research Excellance Award

Mr. Afera Halefom Teka | Engineering | Research Excellance Award

Afera Halefom Teka | University of Chinese Academy of Sciences | Ethiopia

Mr. Afera Halefom Teka is a researcher specializing in cartography, geospatial analysis, hydrology, and land–environment interactions, with strong expertise in GIS, remote sensing, and water resources modeling. His work addresses land use change, hydrological processes, watershed vulnerability, and environmental sustainability across diverse landscapes. With experience in academic teaching, research leadership, and interdisciplinary collaborations, he contributes to evidence-based geospatial solutions for climate resilience, watershed management, and sustainable land–water governance. His research applies spatial modeling, multi-criteria evaluation, machine learning, and advanced cartographic visualization to examine land use dynamics, climate variability, soil erosion risk, groundwater potential, and environmental change detection. He has also taken part in international trainings, conferences, and collaborative projects advancing geospatial applications for disaster risk reduction and resource planning. His contributions have been recognized through academic distinctions, research committee leadership roles, competitive training selections, and conference acknowledgments.

Citation Metrics (Google Scholar)

1000

800

600

400

200

0

Citations
973

Documents
26

h-index
18

        🟦 Citations    🟥 Documents    🟩 h-index


View Google Scholar Profile

Featured Publications

Zhi Zong | Engineering | Best Researcher Award

Prof. Dr. Zhi Zong | Engineering | Best Researcher Award

Fuyao University of Science and Technology | China

Professor Zhi Zong is an internationally acclaimed researcher in naval architecture, ocean engineering, computational mechanics, and fluid–structure interaction, widely recognized for his influential contributions to marine hydrodynamics and advanced numerical simulation. With 334 publications, 5,653 citations, and an h-index of 38 (Scopus), his research covers underwater explosion (UNDEX) physics, nonlinear water waves, bubble dynamics, vortex-induced vibration (VIV), unsteady cavitation, water-entry dynamics, and high-fidelity computational fluid mechanics, employing cutting-edge techniques such as SPH, DEM, and data-driven modeling. He has authored over 460 scientific papers, including more than 230 SCI-indexed articles, and has been continuously listed among the Top 2% Scientists globally (2021–2025). His seven authoritative monographs published with Elsevier, Taylor & Francis/CRC, and Science Press span differential quadrature methods, solitary wave theory, computational underwater explosion mechanics, and bubble damage modeling. Professor Zong’s research has significantly advanced understanding of shock loading on marine structures, hydrodynamic impact, cavitating and multiphase flows, ice–structure interactions, ship motion reduction, and complex multi-physics simulations, with many of his highly cited publications regarded as landmark contributions to SPH modeling, multiphase flow analysis, UNDEX damage prediction, and VIV dynamics.

Profiles: Scopus| Google Scholar | ResearchGate

Featured Publications 

• Liu, M. B., Liu, G. R., Lam, K. Y., & Zong, Z. (2003). Smoothed particle hydrodynamics for numerical simulation of underwater explosion. Computational Mechanics, 30(2), 106–118.

• Liu, M. B., Liu, G. R., Zong, Z., & Lam, K. Y. (2003). Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology. Computers & Fluids, 32(3), 305–322.

• Zong, Z., & Zhang, Y. (2009). Advanced differential quadrature methods. Chapman and Hall/CRC.

• Chen, Z., Zong, Z., Liu, M. B., Zou, L., Li, H. T., & Shu, C. (2015). An SPH model for multiphase flows with complex interfaces and large density differences. Journal of Computational Physics, 283, 169–188.

• Zhang, Y. Y., Wang, C. M., Duan, W. H., Xiang, Y., & Zong, Z. (2009). Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes. Nanotechnology, 20(39), 395707.

Nan Li | Engineering | Best Researcher Award

Dr. Nan Li | Engineering | Best Researcher Award

Associate researcher at erospace Information Research Institute, Chinese Academy of Sciences, China

Dr. Nan Li is an accomplished Associate Researcher at the State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences. With a strong interdisciplinary foundation in biomedical engineering and automation, she specializes in developing microfluidic-based nucleic acid and immunoassay detection systems. Dr. Li has contributed significantly to the advancement of rapid, portable, and sensitive diagnostic technologies, many of which are aimed at point-of-care and field diagnostics for infectious diseases. Her work is deeply rooted in translational research, seamlessly integrating microengineering, biotechnology, and clinical diagnostics.

Profile

Scopus

🎓 Education

Dr. Nan Li received her Ph.D. in Biomedical Engineering from the prestigious Tsinghua University in 2022, after completing her undergraduate degree in Automation from the Beijing Institute of Technology in 2016. During her doctoral studies, she focused on the development of centrifugal microfluidic platforms and integrated biosensing systems, gaining critical experience in both academic research and real-world biomedical applications. Her academic journey laid the groundwork for a career dedicated to creating impactful diagnostic tools for global healthcare needs.

💼 Experience

Dr. Li currently serves as an Associate Researcher at the Chinese Academy of Sciences, where she leads projects under the State Key Laboratory of Transducer Technology. She has also been actively involved in collaborative efforts with academic and industrial partners to translate laboratory innovations into commercial and clinical applications. In addition to her research responsibilities, Dr. Li contributes to scholarly activities as a journal reviewer for Microsystems & Nanoengineering and Current Analytical Chemistry. She has also delivered oral presentations at prominent international conferences such as Transducers 2025 and IEEE Sensors 2024, further reflecting her stature in the field.

🔬 Research Interests

Dr. Li’s core research interest lies in microfluidic technology for nucleic acid amplification, multiplex detection, and point-of-care diagnostics. She is particularly focused on developing integrated fluidic systems that are capable of rapid, accurate, and simultaneous detection of multiple pathogens or biomarkers. Her work often involves combining engineering principles such as centrifugal force and Euler force with advanced biochemical assays like LAMP and CRISPR. This interdisciplinary approach enables her to create portable diagnostic tools with immense potential in epidemic control, food safety, and personalized medicine.

🏆 Awards

Dr. Nan Li’s exceptional work has earned her several prestigious honors, including the Outstanding Reviewer Award from Microsystems & Nanoengineering in 2024. She was recognized as one of the Outstanding Graduates in Beijing in both 2016 and 2022. She also received the First Prize of Tsinghua University Comprehensive Scholarship in 2020 and the Gold Star Distinguished Research Award from the Biochip (Beijing) National Engineering Research Center in 2018 and 2020. Earlier in her academic journey, she was a recipient of the Tsinghua Future Scholar Scholarship, an award conferred upon top-performing doctoral candidates.

📚 Publications

Among Dr. Li’s numerous scientific publications, the following seven represent high-impact research in her field:

  1. Tianping Zhou, Nan Li* (2025). Sensors and Actuators B: Chemical. “Shockproof magnetofluidic multiplex nucleic acid system” – DOI: 10.1016/j.snb.2025.138139.

  2. Nan Li# et al. (2025). Biosensors & Bioelectronics, “Chip-based universal strategy for multiplex PCR”, Vol. 269, 116921.

  3. Bin Xiao# et al., Nan Li* (2024). Food Chemistry, “Toothpick DNA extraction with LAMP platform”, Vol. 460, 140659.

  4. Jiajia Liu# et al., Nan Li# (2024). Small Methods, “One-pot multiplex virus detection”, Vol. 8, 2400030. (Cover Article).

  5. Nan Li# et al. (2022). Sensors and Actuators B: Chemical, “Euler force-assisted sequential liquid release”, Vol. 359, 131642.

  6. Nan Li et al. (2022). Lab on a Chip, “Fully integrated SNP genotyping for hearing loss”, Vol. 22(4): 697–708. (Cover Article).

  7. Nan Li# et al. (2021). Microsystems & Nanoengineering, “Raw-sample-in multiplexed detection system”, Vol. 7(1): 94.

These works are widely cited and demonstrate her contributions to practical innovations in diagnostic technologies.

✅ Conclusion

Dr. Nan Li’s trajectory exemplifies a dedicated and forward-thinking researcher whose work merges engineering innovation with biomedical applications. Through her trailblazing research in microfluidic systems and portable diagnostics, she has not only addressed pressing needs in healthcare but also helped shape the future of rapid disease detection. Her consistent output of high-impact publications, international recognition, and impressive list of awards collectively make her a deserving candidate for a Best Paper Award. Dr. Li’s blend of creativity, precision, and practical implementation reflects the qualities that such an award seeks to honor.

Zeng Meng | Engineering | Best Researcher Award

Prof. Zeng Meng | Engineering | Best Researcher Award

Professor, at Hefei university of technology, China.

Professor Meng Zeng is a leading academic at Hefei University of Technology, specializing in the optimization of uncertain structures, aerospace and civil structural design, and structural topology optimization. With a sharp focus on engineering innovation, Prof. Zeng has guided over 20 funded projects, including prestigious grants from the National Natural Science Foundation of China. Recognized as an Outstanding Youth of Anhui Province, he is celebrated for his dedication to scientific progress. His excellence is marked by receiving two first-class Science & Technology Progress Awards from the Anhui Society of Mechanics. From 2021 to 2024, he has been consistently listed among the world’s top 2% scientists and is a highly cited author in the journal Computers & Structures. 📚 He has authored 90+ SCI papers, including 50+ as the first or corresponding author. His work has received over 4,200 citations, with 8 ESI highly cited papers and 3 hot papers. 🌟

Professional Profile

Scopus

ORCID

🎓 Education

Professor Meng Zeng earned his academic credentials with distinction in civil and structural engineering. Though detailed records of his academic institutions are not publicly specified, his educational background reflects a strong foundation in mechanics and structural design, which paved the way for his current leadership in aerospace and civil engineering innovation. Throughout his education, Prof. Zeng focused on uncertainty modeling, computational mechanics, and optimization techniques, equipping him with the analytical expertise required for cutting-edge structural analysis. His academic training has fostered a mindset geared toward solving real-world engineering problems using theoretical rigor and computational sophistication. 🎓 As an educator and mentor, he now imparts this rich knowledge base to his students and research collaborators at Hefei University of Technology. His journey from a dedicated student to a globally recognized professor exemplifies the impact of solid academic preparation in shaping research excellence. 💼

💼 Experience

Professor Meng Zeng currently serves as a professor at Hefei University of Technology, where he leads research in structural optimization and engineering mechanics. With over 20 funded projects, his contributions span across the National Natural Science Foundation of China (NSFC), including two general and two youth projects. 🏗️ He has applied his research expertise to both aerospace and civil structure applications, combining theory with practical innovations. His role encompasses research leadership, postgraduate supervision, and national-level project management. His accolades from Anhui Society of Mechanics, including two first prizes in scientific and technological progress, affirm his high impact on the engineering community. 🏆 Prof. Zeng also represents China in international research through his involvement in peer-reviewed journals and collaborations. A consistent presence in the top 2% of global scientists (2021–2024), his work shapes modern methodologies in topology optimization and structural resilience under uncertain conditions. 🧠

🔬 Research Interest 

Prof. Meng Zeng’s research interests lie at the intersection of engineering mechanics and computational optimization. His primary focus is on the optimization of uncertain structures, where he develops methods to enhance structural performance despite variations in material properties or loading conditions. 🚀 He is also deeply involved in aerospace and civil structure analysis, contributing to safer and more efficient designs. Prof. Zeng is renowned for his work in structural topology optimization, an area that determines the optimal material layout within a given design space, a key element in lightweight and high-performance structural engineering. 🔧 His research integrates probabilistic methods, finite element analysis, and machine learning algorithms to solve complex, real-world problems. As a thought leader, Prof. Zeng not only advances theoretical mechanics but also offers transformative insights for engineering design under uncertainty, positioning him at the forefront of innovation in applied structural optimization. 📈

🏅 Awards

Professor Meng Zeng’s academic excellence and scientific innovation have earned him numerous accolades. Notably, he was selected as an Outstanding Youth of Anhui Province, a recognition of his early-career contributions to engineering science. 🏆 He has received two First-Class Science and Technology Progress Awards from the Anhui Society of Mechanics, underscoring the high societal and technological value of his work. Between 2021 and 2024, Prof. Zeng was consecutively listed among the world’s top 2% scientists, a global benchmark of research excellence. Additionally, he is a highly cited author in the prestigious journal Computers & Structures, highlighting the global reach and influence of his research. 🌟 These awards are a testament to his impact on both fundamental research and practical engineering applications, positioning him as a top-tier scientist and thought leader in the field of structural mechanics and optimization. 🎖️

📚 Top Noted Publications

Professor Meng Zeng has published over 90 peer-reviewed SCI papers, with more than 50 as first or corresponding author. His work is widely cited, having accumulated over 4,200 Google Scholar citations. He has contributed 8 ESI Highly Cited Papers and 3 Hot Papers, affirming his global academic influence. 🔍 His research often appears in top journals such as:

  1. Reliability-Based Topology Optimization (RBTO):

    • Articles:

      • Data-driven RBTO using extended multiscale FEM and neural networks

      • RBTO for continuum structures with nonlinear dynamics

      • Stress-constrained RBTO with fidelity transformation method

    • Highlights: Use of machine learning (e.g., neural networks), multiscale finite element modeling, and probabilistic analysis to optimize structural performance under uncertainty.

  2. Dynamic and Transient Response in Optimization:

    • Articles:

      • Transient dynamic topology optimization using equivalent static loads

      • Uncertainty-oriented topology optimization of dynamic structures

    • Highlights: Focus on efficient dynamic response prediction and hybrid uncertainties (probabilistic + spatial/random field modeling).

  3. Metaheuristic and Bio-Inspired Algorithms:

    • Article:

      • Starfish Optimization Algorithm (SFOA) – Compared with 100 optimizers.

    • Highlights: Development of novel optimization algorithms inspired by biological behaviors; applied to structural or global optimization problems.

  4. Concurrent Topology and Material Design:

    • Article:

      • Concurrent optimization of topology and fiber orientation under stress constraints

    • Highlights: Combines material orientation (like composite fibers) with shape optimization for optimal mechanical performance.

  5. Uncertainty Quantification Techniques:

    • Article:

      • Weight index-based uniform partitioning of multi-dimensional probability space

    • Highlights: Proposes a novel method to efficiently sample and compute in high-dimensional uncertainty spaces.

  6. Materials & Structural Systems Innovation:

    • Articles:

      • Porous functionally graded composite plates with graphene reinforcements

      • Non-uniform rectangular honeycomb sandwich panel

    • Highlights: Focus on lightweight, high-strength materials and sandwich structures for performance and efficiency.

Conclusion

Professor Meng Zeng is a highly suitable candidate for the Best Researcher Award. His extensive research output, impactful publications, strong citation record, and recognition at national and international levels highlight a career marked by innovation, consistency, and academic leadership. With minor improvements in global engagement and interdisciplinary expansion, he stands out as a role model for excellence in engineering research.

Karla Filian | Engineering | Best Researcher Award

Mrs Karla Filian |  Engineering |  Best Researcher Award

Graduate student in the Master’s program in Earth Sciences,  at Faculty of Engineering in Earth Sciences, ESPOL Polytechnic University,  Ecuador

Karla Filian Haz is a graduate student pursuing a Master’s in Earth Sciences at ESPOL Polytechnic University. With a background in Mining Engineering, she works as a Project Analyst, contributing to research and academic initiatives in Earth Sciences. Her research focuses on environmental pollution mitigation, water treatment technologies, and sustainable engineering solutions. She has co-authored two indexed journal articles and two conference papers, collaborating with international institutions such as Ghent University and the Mexican Geological Survey. Her work aims to develop innovative solutions for environmental management in mining and water treatment.

Profile:

Academic & Professional Background:

Mining Engineer pursuing a Master’s in Earth Sciences at ESPOL. Currently a Project Analyst, contributing to research, academic initiatives, and program coordination in Earth Sciences. Expertise in event organization, documentation management, and compliance.

Research & Innovations:

  • Research Projects: 4
  • Publications: 2 indexed journal articles, 2 conference papers
  • Citations: h-index: 1, Citations: 2
  • Collaborations: Ghent University (Belgium), Catholic University of Santiago de Guayaquil, Universidad del Pacífico (Ecuador), Mexican Geological Survey (SGM)

Research Areas:

Environmental engineering, pollution mitigation in mining, water treatment technologies, sustainable engineering solutions.

Key Contributions:

Research on environmental pollution, tailing dam risks, and desalination optimization using advanced membranes. Findings contribute to sustainable solutions for water treatment and environmental management in the mining industry.

Publication Top  Notes:

Title: Assessment of Environmental Pollution and Risks Associated with Tailing Dams in a Historical Gold Mining Area of Ecuador
Authors: B. Salgado-Almeida, A. Briones-Escalante, D. Falquez-Torres, E. Peña-Carpio, S. Jiménez-Oyola
Journal: Resources (2024)
Citations: 1